Matematika Study Center

Better than Nothing

Dasar Trigonometri 10 SMA

Matematikastudycenter.com- Contoh soal dan pembahasan trigonometri dasar matematika SMA kelas 10.

Soal No. 1
Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad


Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad


Soal No. 2
Nyatakan sudut-sudut berikut dalam satuan radian (rad):
a) 270°
b) 330°

Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 270°


b) 330°


Soal No. 3
Diberikan sebuah segitiga siku-siku seperti gambar berikut ini.

Tentukan:
a) panjang AC

b) sin θ

c) cos θ

d) tan θ

e) cosec θ

f) sec θ

d) cotan θ

Pembahasan
a) panjang AC
Dengan phytagoras diperoleh panjang AC



b) sin θ



c) cos θ



d) tan θ



e) cosec θ



f) sec θ



g) cotan θ



Soal No. 4
Sebuah segitiga siku-siku.



Diketahui nilai dari sin β = 2/3. Tentukan nilai dari :
a) cos β
b) tan β

Pembahasan
sin β = 2/3 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 : 3





Gunakan phytagoras untuk menghitung panjang sisi yang ketiga (sisi samping):



Sehingga nilai cos β dan tan β berturut-turut adalah



Soal No. 5
Seorang anak berdiri 20 meter dari sebuah menara seperti gambar berikut.



Perkirakan ketinggian menara dihitung dari titik A! Gunakan √2 = 1,4 dan √3 = 1,7 jika diperlukan.

Pembahasan
tan 60 ° adalah √3, asumsinya sudah dihafal. Sehingga dari pengertian tan sudut



Tinggi menara sekitar 34 meter.

Soal No. 6
Sebuah marka kejut dipasang melintang pada sebuah jalan dengan sudut 30° seperti ditunjukkan gambar berikut.



Jika panjang marka kejut adalah 8 meter, tentukan lebar jalan tersebut!

Pembahasan
Segitiga dengan sudut istimewa 30° dan sisi miring 8 m.



sin 30° = 1/2
sin 30° = BC/AC
BC/AC = 1/2
BC = 1/2 × AC = 1/2 × 8 = 4 meter

Lebar jalan = BC = 4 meter

Soal No. 7
Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 cm.



Tentukan panjang sisi segitiga tersebut!

Pembahasan
Δ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar berikut.



Sinus 60° pada segitiga ATC adalah perbandingan sisi TC (sisi depan) dengan sisi AC (sisi miring) sehingga



Soal No. 8
Diketahui segitiga ABC dengan panjang AC = AB = 6 cm. Sudut C sebesar 120°.



Tentukan luas segitiga ABC!

Pembahasan
Segitiga ABC adalah sama kaki. Jika diambil garis tinggi TC maka didapat gambar berikut.



Menentukan panjang AT dan CT dengan sudut yang diketahui yaitu 60°



Sehingga luas segitiga adalah



Soal No. 9
cos 315° adalah....
A. − 1/2 √3
B. − 1/2 √2
C. − 1/2
D. 1/2 √2
E. 1/2 √3
(Soal Ebtanas 1988)

Pembahasan
Sudut 315° berada di kuadran IV. Nilai-nilai cosinus sudut di kuadran IV memenuhi rumus berikut:
cos (360° − θ) = cos θ

Sehingga
cos 315° = (360° − 45°) = cos 45° = 1/2 √2

(updating..)

Free Joomla Templates: by JoomlaShack
Template Upgrade by Joomla Visually